Postgraduate Studies Program
«ENVIRONMENTAL ENGINEERING»

Specialization: 2-WWT: WATER AND WASTE TREATMENT

<table>
<thead>
<tr>
<th>Code:</th>
<th>WWT 200</th>
<th>Course:</th>
<th>Advanced water and wastewater treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required:</td>
<td>X</td>
<td>Elective:</td>
<td></td>
</tr>
<tr>
<td>1st semester</td>
<td>X</td>
<td>2nd semester</td>
<td></td>
</tr>
</tbody>
</table>

Instructors:
Professor E. Diamadopoulos
Professor N. Kalogerakis
Associate Professor P. Gikas

Bibliography

Course objectives
The course aims at the analysis and design of advanced processes for the treatment of water, wastewater and biosolids (sludge), as well as topics related to the operation of wastewater treatment plants.

Syllabus
1. Membrane separation processes [ED]
 i. Basic principles of osmosis and reverse osmosis
 ii. Modelling of membrane separation
 iii. Membrane separation systems
2. Heavy metal removal by precipitation [ED]
 i. Basic principles of water equilibrium
 ii. pH – Buffering capacity of water
 iii. Solubility product – Chemical precipitation
3. Anaerobic treatment of wastewater and sludge [ED]
4. Attached growth treatment systems and membrane bioreactors [PG]
 i. Immobilized biomass reactors
 ii. MBR systems
5. Management and treatment of biosolids (sludge) [PG]
 i. Thickening, dewatering and stabilization of biosolids
 ii. Composting of biosolids
 iii. Energy valorization of biosolids by thermal processes
6. Reclamation and reuse of wastewater [PG]
 i. Legislation and limits
 ii. Tertiary treatment systems
 iii. Disinfection of reclaimed wastewater

7. Generation and control of odors [NK]
 i. Generation of odors in sewers and pumping stations
 ii. Generation of odors in wastewater treatment plants
 iii. Quantitative measurement of odors
 iv. Technologies for odor control

8. Automation, programming and control systems [NK]
 i. Feedback/Feedforward systems
 ii. Basic control variables
 iii. Process control through microscopic observations
 iv. PLC & SCADA systems

9. Modelling of activated sludge systems–ASM3 [NK]
 i. Application in an extended aeration treatment plant
 ii. Application in Sequencing Batch Reactor (SBR) systems
 iii. Application in Membrane Bioreactors (MBR)

Work load

A. Lab exercises
 1. *Reverse osmosis desalination*
 2. *Wastewater treatment in biofilters*

B. Three (3) written assignments

Student evaluation

1. Lab reports (20%)
2. Written assignments (30%)
3. Final exam (50%)